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Abstract: In present paper, some new results related to the existence, strict and non-strict inequalities

and existence of the max1ma1 and minimal solutlons are proved for perturbed differential and integral

equations with non-linearity conditions:"

Index Terms: Perturbed dlfferentlal equatlon Ezustence theorem f=D1fferent1al and Integral

inequalities, maximal and m1n1ma1 solutlons

1. Introduction :

x—gEx(() 5
ECO)

ii) x satisfies the equations in (1.1)

solutely continuouis function for each xe R, and

1) the function ¢ —

The significance of the study of Hybrid differential equatxon lies in the fact that they cover dlverse
dynamic systems as a special cases. The forethought of Hybrid Differential equatrons is absolute in the
work of Krasnoselskii[3] and extensively treated in the various papers on Hybrid differential equations
with different perturbations. See Burton[4], Bellale[7] and-the references therein. This 'cléss of Hybrid
differential equations includes the perturbations of origirxal differential equations in different ways. In
this paper, we commence the new results in the theory of perturbed differehtial and integral equations
with hoh—linearity conditions and prove the basic results such as existence theorem, maximal and
minimal solutions etc.

We pretense that the results of this paper are new and important contribution to the theory of non-linear

ordinary differential equations.
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2 Stnct and Non-Strict Inequalities :
We need regularly the following hypothesis in what follows

o

(Ao) The function x — x=g6x(®) ; is increasing in R for all te I.
S, x((0)))

. We begin by proving the basic results dealing with_ hybrid differential inequalities.
Theorem 2.1 : Assume that hypothesis (Ao) hold. Suppose that there exist y,z e C(I,R) such that

d[ y0-gt,ym®)
&l fym)

A

:!Sq(t,;V(Tl(l‘))) aetel (2.1)

and

d [ 2()-g(t,z®) =
dt | f(tz(@) ]2 q(t,z(m(#))) aetel (22)

If one of the inequalities (2.1) and (2.2) is strict and
V() <z (to) :

-~

Then

Forall tel.
Proof:- We prove this res

Is non-empty, when Z i
Denote ¢, =inf Z *.

Without loss of general
Assume that

d|z()-g
dt ,z(a

Y(t)=

Denote

~and

Z(t)=

Now by definition of continuity of
t, > ¢, such that
y(t,)=z(t,) and y(t) < z(t)
SJorallt, <t<t,
As hypothesis (Ao) holds, it follows from (2.5) that - s Yl R g -
Y(t,)=l: »(t)- g(tpy(n(tl)))] | | T T
S, y(n(2,)) ' , : _ LT S
=|:z(t])—g(tl,z(1‘|(tl))):|
S(,z(n(,))
CY@E)EZE ot > 1)
-and .
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Y(,)z[ya)—g(t,y(n(r»)}
£ ym@)

3 [z(t) ~g, Z(n(t)))]
St,z((®)
- Y(O)<Z(®) 2.7
Sforall ty<t<t,.
The above relation (2.7) further yields
Y, +h)-Y (1) S Z(t,+h)-Z(t)
: h h
For small h<0. Taking the limit as 2 — 0 , we obtain
Y'(t)=2Z'@t). (2.8)
Hence, from (2.7) and (2.8), we get
g, y(m@)) 2Y'(6) 2 Z'(t) > g(t,,z(n(,)))-

/J‘

_This is a contradiction and the proof is complete

The next result deals W}

ld. Su re exists a r_eal number L>O
DL a(s) - g(S%(j(f)))] G
L Ss@0) '

such that g (¢, y(n(t))) =

Whenever
y(s) 2 z(s),8, <

.implies
foralltel.
Proof:- Let €> 0 and let

Define

= a(t)—g(txﬁ%‘?@» ”
E Stz @)

fortel.

Now using the one-sided LlpSChltZ condition (2. 9), we obtam

q(t, z.((®))) —q(t,z(m@®)) <L fzg [Z.(s)- Z(s)] . L e 2H).

Now,
Z()=Z()+2Le™
> gtz +2Le ™™ .
2 q(t,z. (@) +2Lee ™ -Le s
=q(t,z.(nO)+Lee ™
>q(t,z. ()
Forall te . Also, we have

: Also we have Z_(t,) > Z(t,) 2 Y (Z,)-
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Now we apply Theorem 2.1 with z = z_to yield
Y(t) < Z.(6)
"For all ¢ € I.On taking €—> 0 in the above inequality, we get
YO <Z(@)
Which is in view of hypothesis (Ao) implies that (2.11) holds on I. This completes the proof.

Remark 2.1 The conclusion of Theorem 2.1 and 2.2 also remain true if we replace the derivatives

in the inequalities (2.1) and (2.2) by Dini-derivative D_ of the function X(0)— gt x(n(®) on the
S, x(m()))

bounded interval L.

3. Existence Result:

In this part we give a proof of an existence

the perturbed hybrid differential equation (1.1)

for x,yeC(I,R).

: above supremum norm

and Multiplication % egrable real valued

- We prove the existence of solutlons for e ';%%E (1 1) via the followmg hybnd ﬁxed pomt
theorem in the Banach algebras [7].

Theorem 3.1 Suppose that V is closed convex and bounded subset of the Banach algebxa E and let
A C:E—FE and B:V — E be three operators such that
a) A and C are Lipsehitz with Lipschitz constants o and B resbectively, _
b)Bis 'comi)act and continuous, =
- ¢) x=AxBy+Cx for all yeV =xeV,and
d) aM +B <1, wﬁere M= "B(V)" = sup{"Bx" :xeV}.
Then the operator equation 4AxBy +Cx =x has a solution in V.

We consider the following hypothesis in what follows.
(A1)  There exists a constant L, >0 and L, >0 such that

|f@t. %)~ Ft, )<L x|
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and
lg(t.x)—g(t, M| <L,|x—)]|
forall teland x,y€R.
(A2)  There exists a continuous function & e L'(Z,R) such that |g(t,x)| <h(f) t<l,

forall xeR.
To prove the theorem the following lemma is useful which is step by step discussed.

Lemma 3.1 Assume that hypothesis (Ao) holds. Then for any continuous function h< I'(I, R .), the

function x € C(Z,R,) is a solution of the PHDE
d [x(t) g, x(‘n(t)))] WO aetel

St x(n(®)) (3.1)
x(0)=x,€eR

if and only if x satisfies the perturbed hybrid integral equation(PHIE)
8y,
x(t) = g6, x@ (O + £ ¢, x(n(t)))[——ﬂ +f h(s)ds] tel (32

Proof :- Let heL‘(I,
x(t) - gL XG@))
S @x(n(0))

) First ‘suppose th

leferentlatmg above equation we gct —%

- Now substituting ¢ =#, in (3.2) ,we get . 4
x(to) —g(toax(ﬂ(to))) = %o '—g(to’xo) .
S (5 x611(,))) S, X,

at x satisfy the PHDE (3.1). Then by definition,

Since the mapping x - }5()‘( ¥ is an increasing in R almost everywhere for tel. Also the mappmo
x_g(()a ) : : - : o P X
= Tx(— is one -one in R, Whence x(t,) = x, .This completes the proof of the Iemma
o,

Now we are going to discuss the following existence theorem for the PHDE (1. 1) on the mterval L
Theorem 3.2 : Assume that the hypothesis (Ao) — (A2) hold. Further, if

Xo — é(to > xO) 2
L| |y h".)+,z,2 <1 (3.3)
f (to:xo) " ¢

then the PHDE (1.1) has a solution defined on I.
Proof : Set E=C(I,R) and define a subset V of E defined by
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V ={xeE|jx|< N} | _ (34)
| ( 8l %)| J+KO |
Where N = 5 3

f(to’xo)
—4( +Mh]—

X — 8, ﬁql
and F, =sup|/(¢,0)| and K, =sup|g(t,0)|-
T tel | . tel p

S (%)

Clearly V is a closed, convex and bounded subset of the Banach algebra E.
Now using the hypotheses (Ao) and (A2) and application of lemma 3.1, it can be easily show that the
PHDE (1.1) is equivalent to the non-linear PHIE

x(t) = g, XN +[ 1 @, x(n(t)))](%wh [a(s,xn(s))ds ] (35)

fortel.
We define three operators A C:E—E and B:¥V-— Eby

and

Q

it can be shown that C is also a Llpschltz rator.on %@%{th the,«,fipschltz constant L. - -
=- 3 - .
Now we have to show that B is compa_g@%%and contmuousgperafor on V 1nto E. First we prove B 1s <k
continuous on V. . : '
‘Let {x,} be a sequence in V converging to a poit

integration, we obtain

lm Bx, (1) = 1&(%22* [ ats,x, (s J

forall x,y e E.This shows the A -ig@ ‘

evV. Then by dominated convergence theorem for o

_ %8l %) lim j q(s,x (n(S)))dS

S (%)
_ X — 8ty %) S ; -
T I [gg (5., (1)) |ds
- f(if’°;)°) Iq(s Cr(s))ds

=Bx(t) , for tel. 7
Moreover, it can be shown as below that {Bx_ }is an equicontinuous sequence of functrons in X. Now
followmg the arguments similar to that given in Granas et.al[2] , it is proved that B is a continuous .
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operator on V.
- Now we have to show B is compact operator on V.
To prove this it is sufficient to show that B(V) is a uniformly bounded and equicontinuous set in E.
Let xeV be an arbitrary element . Then by hypothesis (A2).

|Bx(9)] < %ﬁ‘;;‘—) +[laCs. = s

X, — 8, %) h
o) + j h(s)ds

IA

)

<[ 8lXl 1y forall ter.

o uL,}

S (5, %p)

Taking supremum over t,

Sup IBx(t)l < Sup{

(t55%5)

PAUREYY)

)

Where p(t) = jh(s)dv S ce‘iﬂl

L)

‘Now we have to show that hypo :I, ‘  of Theorersi" 1 is satisfied. Let xcE and yeVbe
arbitrary such that x = AxBy+Cx Then, y *iizi__g- pﬁﬁ; , we have
0<e<g,. ‘ :
Taking supremum over t, :
 Rfpostesly, s,
s — e -
Xo — 8> %)
T
This shows that hypothesis (c) of Theorem (3. _1)__1s satlsﬁed 77777
Finally we have to prove hypothes1s @ of 'I‘heorem (3.1) holds.
g (t>%,) " u
f (&> o) ¢

M =||B)| = Sup{|Bx||: x eV} < <|Zo 8l %)

We have and so,

X, — &8t %) [y |-
L1M+L2 SA(——f—(Z,?O)—‘F"h"L, J'*‘Lz <l1.

L : Thus all the conditions of theorem-(3.1) -are satisfied -and hence -the -operator - equation
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AxBy+Cx x has a solution in V.As a result, the PHDE (1 1)hasa solutlon defined on I. This
completes the proof 8

4. Maximal and Minimal Solutions:
In this section we shall discuss the existence of max1ma1 and minimal solutlons for PHDE (1.1) on
I= [to’to +p].
Definition 4.1: - A solution r of the PHDE (1.1) is said to be Maximal if for any other solution x to
the PHDE (1.1) one has x(t) <r(f), for all t € I .Again, a solution . p of the PHDE (1.1) is said to be
minimal if p(¢) < x(¢), for all t € I, where x is any solution of the PHDE (1.1) existing on L.

We study the case of Maximal solutions only , as the case of minimal solution is similar and can be
proved with the suitable and appropriate modifications.
Given a arbitrary small real numbere> 0, consider the following IVP of PHDE

d| x(f)—gt,x(m®)) | _
E[ 1@t xm()) ] =qt,x(mO)+e aetel

4.1

An existence theorem for the PHDEAI 1)»Jcan be- g@tated as fgll vs:
{ / ‘)(Az)hofl Suppt
1) hasa

Then for every ‘small m]mbere> 03t
Proof :-By hypothesis , since

g

There exists an €,> 0

11[

11[|x0+co g(t,,,x0+60)| Nh||u+€0 p}LL <l “4.3)

ftpxte) | g
The number €, exists in view of the inequality (3.3). Then for any solution u of the PHDE(l 1), by L
Theorem 2.1,one has . , i
t,t,el > 49
For all t E"L arla eN U{0} ,where r(t,€,) is a solution of the PHDE o
_[x(t)—g(t, x((®)
e[ ftx(@))

x(t))=x,+€,€R

]=q(t,x(n(t)))+ € aetel s

Defined on L.
Since, by Theorem 3.1 and 3.2 ,{ r(t,€,) } is a decreasing sequence of positive real numbers, the——v--

limit
r(r\..hm r(t,€,) (4.6)
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exists. We show that the convergence in (4.6) is uniform on I. To finish ,it is enough to prove that the

O sequence {r(t,s,) } is equicontinuous in C(LR). Let ¢, € I be arbitrary. Then

[rt,,€,)—r(tys€,)|
= ]g(tp r(tpe,.)) —g(tz xr(IZ’Eu))I

+[f(tvr tx:é»](ﬁ"‘j‘]@" (5))d-V+IE dS'Jl
l[f (t,,r(t,5€, »][ﬁ;o—’o— Iq(s,r (s))ds + I € dsJ

<|glt,,r(t,,€,)) - gt r(t,,€,))|

+[f(t,r t,,en))][ + j q(s,r, ()Mds + j € dsJ'

f(tO’ 0+ )

XtE,

f( 5 % l, .

. b
—[f(tz,r(tz,e.»][ +[asr. (s)

+[f(tsrityse, ))](73:—+ _[ qgw s))ds+}
Slg(t,,r(tl,en))—g(tz,r( 7 '

+[ e D[t

+ F[IP(tl) = P(tz)l + Itl )
where

F= sup |f @

(t,x)e[ {=N,N]

0

Since f and g are
‘Hence :
If(tlér(tl €,

and

Ig(tl,r(t,,en))—-g( 2
uniformly for all » € N.Similarly, s
_continuous and hence

IP(tx)fP(tz)l")o as 4, —t,

nuous on compact set I, it is uniformly

uniformly for all ¢,t, €I.
Therefore, from the above inequality (4.7), it follows that

Ir(t,€,)—r(t,,€,)| =0 as £, ¢,

umformly forall ne N. Therefore
r(t,e,) >r() as n—>ow

for all tel
Next , we show that the function #(?) is a solution of the PHDE(3 1) defined on L

Now, since r(t,€,) is a solution of the PHDE (4. 5), we have
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_——f(to, i) ;[q(sr(s))ds+_|.e ds} e .

r(t,e,) = [f(t r(t,e ))](
+g(t,r(t,c,))
for ali ¢ € I. Taking the limit as n — oo in the above equation (4.8) yields
x,—g(t,,x,) |
r(te,) = gtrm@) +[fErm@))]| 2880 | [ 46 rincods
I, %) o
for all ¢ € I. Thus the function 1 is a solution of the PHDE(} .1) on L. Finally from the inequality (4.4) it
follows that |
w(t)<r(r)
for all ¢ € I. Hence the PHDE(1.1) has a maximal solution on I. This completes the proof.

5. Comparison Theorems:

d or the solution set for the

s

The main purpose of (g{ﬁ’érentxal mequahtles is to" fmd :the bo

I={t),t,+ p].

Theorem 5.1 Assume th

Then,

of the PHDE (4.1) and that the limltﬂ "~ ,
r(t)=limr(,€) - (5.3)
is uniform on I and the function r is a maximal solution of the PHDE (1.1) on I. Hence we obtain

i r(t,e).—g(t,r(q(t),e))
dt

] =q(t,r(n(t),e)+e,tel

S, r(n(@),€)) (54)
r(ty,€) =x,+€
From abpve inequality it follows that |
d[ r,e)—gt,rm@),e) .
dt[ S.r@@),e) - ]>q(t’r(ﬂ(t) <)) ware] (5.5)

r(ty,€) > x, : BT

Now we apply theorem 2.1 to the inequalities (5.1) and (5.5) and conclude that .
u(t)<r(t,e) (5.6)

For all ¢ € I. This further in view of limit (5.3) implies that inequality (5.2) holdson L.~
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This completes the proof.
3 Theorem 5.2 Assume that the hypotheses (Ao)-(A2) hold. Suppose that the condition (3.3) holds.
Further, if there exists a function ve C(Z, R) such that A |

d [ vO)-g(t,v@®)
Z[ bi .(t,v(r](t))) ]Zq(t’v(”(t))), aetel

V(ty) 2 X,-

A Then, 2 (O ES%0) (5.8)

(5.7)

for all ¢ € I, where p is a minimal solution of the PHDE (1.1)on L

Note that, Theorem 5.1 is useful to prove the boundedness and uniqueness of the solutions for PHDE

(1.1) on LA result in this direction is

Theorem 5.3 : Assume that the hypotheses (Ao)-(A2) hold and let the condition (3.3) holds. Suppose

)< [ul(t) g(, u.(r;(t»]”**‘%‘gé ) -g, uz(n(t»}
@l fem@@) | @l feum@)

<|©@x)(0) ~(2x,))|

<ol s [1O-eCu@@®) _u©O-g, u,(n(t»|)
T feum@@) T fenm@) |
= G(t,m(t)) o

for all t € I; and that m(t,) =0

wa, we apply Theorem 5.1 with g=0, /' =1to get that m(t)=0 forallt €.
This gives '

' (1) - g(t,u@®) _ ()~ 8t,u,(1())
= GEAGIQ) S tu,(m(®)

for all t € I.Finally, in view of hypothesis (Ao) we conclude that () =, (t) on L. This completes the
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proof.

Remark 5.1 The hybrid differential equations is a rich area for variety of nonlinear ordinary as well as
partiél differential equations. Here we have considered a very simple hybrid differential equation
involving three nonlinearities, however , a more complex hybrid differential equation can also be studied

on similar lines with suitable modifications.
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